Building a Real-time Dashboard with Flask and Svelte

Last updated April 8th, 2025

In this tutorial, you'll learn how to build a real-time analytics dashboard using Flask and Svelte. We'll use server-sent events (SSE) to stream live data updates from Flask to our Svelte frontend, creating an interactive dashboard that updates in real-time.

Final app:

Dashboard final

Dependencies:

  • Svelte v5.23.2
  • SvelteKit v2.19.0
  • Node v22.14.0
  • npm v11.2.0
  • Flask v3.1.0
  • Python v3.13.2

Contents

Objectives

By the end of this tutorial, you should be able to:

  1. Set up a Flask backend with real-time data streaming capabilities
  2. Create a modern Svelte application using SvelteKit
  3. Implement server-sent events (SSE) for real-time data updates
  4. Build interactive charts and graphs with Svelte components
  5. Handle real-time data updates efficiently in the frontend

What Are We Building?

We'll create an analytics dashboard that displays mock sensor data in real-time. The dashboard will include:

  • A line chart showing temperature trends
  • A gauge chart displaying current humidity levels
  • Real-time status indicators
  • Historical data view

This is a practical example that can be adapted for any application requiring real-time data visualization.

Project Setup

Let's start by creating our project structure, open a terminal and run the following commands:

$ mkdir svelte-flask-dashboard
$ cd svelte-flask-dashboard

We'll organize our project with two main directories:

svelte-flask-dashboard/
├── backend/
└── frontend/

Let's begin with the backend setup...

Flask Backend

First, let's set up our backend environment. Create and navigate to the backend directory:

$ mkdir backend
$ cd backend

Create and activate a virtual environment:

$ python -m venv venv
$ source venv/bin/activate
$ export PYTHONPATH=$PWD

Install the required dependencies:

(venv)$ pip install flask==3.1.0 flask-cors==5.0.1

We're using Flask for the backend with CORS support for cross-origin requests.

Create the following directory structure in the "backend" folder:

backend/
├── app/
│   ├── __init__.py
│   └── sensor.py
│   └── api.py
└── main.py

Let's implement a mock sensor data generator in backend/app/sensor.py:

import random
from datetime import datetime
from typing import Dict


class SensorData:
    def __init__(self):
        self.min_temp = 18.0
        self.max_temp = 26.0
        self.min_humidity = 30.0
        self.max_humidity = 65.0

    def generate_reading(self) -> Dict:
        """Generate a mock sensor reading."""
        return {
            "timestamp": datetime.now().isoformat(),
            "temperature": round(random.uniform(self.min_temp, self.max_temp), 1),
            "humidity": round(random.uniform(self.min_humidity, self.max_humidity), 1),
            "status": random.choice(["normal", "warning", "critical"])
        }

Now, let's create our Flask application in backend/app/api.py:

import json
import time

from flask import Flask, Response, jsonify
from flask_cors import CORS

from .sensor import SensorData


app = Flask(__name__)
CORS(app, resources={r"/*": {"origins": "http://localhost:5173"}})  # Svelte dev server
sensor = SensorData()


@app.route("/")
def root():
    return jsonify({"message": "Welcome to the Sensor Dashboard API"})


@app.route("/current")
def get_current_reading():
    """Get the current sensor reading."""
    return jsonify(sensor.generate_reading())


@app.route("/stream")
def stream_data():
    """Stream sensor data using server-sent events."""
    def generate():
        while True:
            data = sensor.generate_reading()
            yield f"event: sensor_update\ndata: {json.dumps(data)}\n\n"
            time.sleep(2)  # Update every 2 seconds

    return Response(generate(), mimetype="text/event-stream")

Let's break down how the streaming works in our Flask application:

  1. Generator Function: The generate() function is a Python generator that:
    • Runs in an infinite loop to continuously send data
    • Yields properly formatted SSE messages
    • Each message consists of:
      • event: sensor_update - Names the event type
      • data: {...} - Contains the JSON payload
      • \n\n - Required double newline to separate messages
  2. Response Object: Flask's Response class with mimetype="text/event-stream":
    • Sets the correct Content-Type header for SSE
    • Handles chunked transfer encoding automatically
    • Maintains an open connection with the client
    • Flushes data immediately to ensure real-time updates

There are several alternative approaches for implementing SSE in Flask:

  1. requests-sse: A modern Python client library for Server-Sent Events.
  2. Redis: For scalable SSE implementations

Rough examples:

# -------- requests-sse -------- #


from requests_sse import EventSource


def consume_events():
    """Client-side SSE consumer using requests-sse."""
    url = "http://localhost:8000/stream"
    with EventSource(url) as event_source:
        try:
            for event in event_source:
                # Process each event
                if event.type == "sensor_update":
                    data = json.loads(event.data)
                    process_sensor_data(data)
        except Exception as e:
            print(f"Error: {e}")


# -------- Redis -------- #


import redis
from flask import Response


redis_client = redis.Redis(host="localhost", port=6379)
pubsub = redis_client.pubsub()


@app.route("/stream")
def stream():
    def generate():
        pubsub.subscribe("sensor_updates")
        for message in pubsub.listen():
            if message["type"] == "message":
                yield f"data: {message["data"].decode()}\n\n"

    return Response(generate(), mimetype="text/event-stream")

While our implementation using Flask's built-in Response class is straightforward and suitable for this tutorial, production applications with multiple clients with the need for message queuing, should consider using Redis for better scalability.

The /current endpoint provides immediate sensor readings, while the /stream endpoint maintains a persistent connection for real-time updates. This combination allows our frontend to show both current state and live updates efficiently.

Finally, create the entry point in backend/main.py:

from app.api import app


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=8000, debug=True, threaded=True)

Start the server:

(venv)$ python main.py

Your API should now be running at http://localhost:8000. After visiting the URL, you should see the following output:

{
"message": "Welcome to the Sensor Dashboard API"
}

Svelte Frontend

Now let's create our Svelte application using SvelteKit. Navigate back to the project root and create the frontend:

$ cd ..
$ npx [email protected] create frontend

When prompted, select the following options:

  • Which template would you like? › SvelteKit minimal
  • Add type checking with TypeScript? › Yes, using TypeScript syntax
  • What would you like to add to your project? (use arrow keys/space bar):
    • ✓ prettier
    • ✓ eslint
    • ✓ vitest
  • Which package manager do you want to install dependencies with? › npm

Install the dependencies:

$ cd frontend
$ npm install

We'll also need some additional packages for our dashboard:

Let's create our main dashboard layout. Replace the contents of frontend/src/routes/+page.svelte with:

<script lang="ts">
  import { onMount } from 'svelte';
  import type { SensorReading } from '$lib/types';

  let currentReading = $state<SensorReading | null>(null);
  let eventSource = $state<EventSource | undefined>(undefined);

  onMount(async () => {
    // Initial data fetch
    const response = await fetch('http://localhost:8000/current');
    currentReading = await response.json();

    // Set up SSE connection
    eventSource = new EventSource('http://localhost:8000/stream');
    eventSource.addEventListener('sensor_update', (event) => {
      currentReading = JSON.parse(event.data);
    });

    return () => {
      if (eventSource) eventSource.close();
    };
  });
</script>

<main class="container">
  <h1>Sensor Dashboard</h1>

  {#if currentReading}
    <div class="dashboard-grid">
      <div class="card">
        <h2>Temperature</h2>
        <p class="reading">{currentReading.temperature}°C</p>
      </div>

      <div class="card">
        <h2>Humidity</h2>
        <p class="reading">{currentReading.humidity}%</p>
      </div>

      <div class="card">
        <h2>Status</h2>
        <p class="status {currentReading.status}">{currentReading.status}</p>
      </div>
    </div>
  {/if}
</main>

<style>
  .container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 2rem;
  }

  .dashboard-grid {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
    gap: 1rem;
    margin-top: 2rem;
  }

  .card {
    background: #fff;
    padding: 1.5rem;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
  }

  .reading {
    font-size: 2rem;
    font-weight: bold;
    margin: 1rem 0;
  }

  .status {
    text-transform: uppercase;
    font-weight: bold;
  }

  .status.normal { color: #2ecc71; }
  .status.warning { color: #f1c40f; }
  .status.critical { color: #e74c3c; }
</style>

Create a new file frontend/src/lib/types.ts to define our types:

export interface SensorReading {
  timestamp: string;
  temperature: number;
  humidity: number;
  status: 'normal' | 'warning' | 'critical';
}

With the backend running in one terminal window, start the Svelte development server:

$ npm run dev

Your dashboard should now be accessible at http://localhost:5173, showing real-time sensor data updates!

Dashboard initial

What's happening in this code?

  1. Component Structure: The dashboard component follows a typical Svelte structure with three main sections:
    1. Script (logic)
    2. Template (HTML)
    3. Style (CSS)
  2. Data Management
    1. Uses TypeScript for type safety
    2. Maintains two key pieces of state:
      1. currentReading: Stores the latest sensor data
      2. eventSource: Manages the real-time connection
  3. Real-time Data Flow:
    1. Initial Load: Fetches current sensor data when component mounts
    2. Live Updates: Establishes SSE connection for real-time updates
    3. Cleanup: Properly closes connection when component is destroyed

The temperature, humidity, and status are pulled from the backend from values defined in sensor.py and shown in the dashboard.

Real-time Charts

Let's enhance our dashboard with interactive charts using Chart.js. First, create a new components directory:

$ mkdir src/lib/components

Create a new component for our temperature chart in frontend/src/lib/components/TemperatureChart.svelte:

<script lang="ts">
  import { onMount } from 'svelte';
  import Chart from 'chart.js/auto';
  import type { SensorReading } from '$lib/types';

  const { data } = $props<{ data: SensorReading[] }>();
  let canvas: HTMLCanvasElement;
  let chart = $state<Chart | undefined>(undefined);

  $effect(() => {
    if (chart && data) {
      chart.data.labels = data.map(reading => {
        const date = new Date(reading.timestamp);
        return date.toLocaleTimeString();
      });
      chart.data.datasets[0].data = data.map(reading => reading.temperature);
      chart.update();
    }
  });

  onMount(() => {
    chart = new Chart(canvas, {
      type: 'line',
      data: {
        labels: [],
        datasets: [{
          label: 'Temperature (°C)',
          data: [],
          borderColor: '#3498db',
          tension: 0.4,
          fill: false
        }]
      },
      options: {
        responsive: true,
        animation: {
          duration: 0 // Disable animations for real-time updates
        },
        scales: {
          y: {
            beginAtZero: false,
            suggestedMin: 15,
            suggestedMax: 30
          }
        }
      }
    });

    return () => {
      if (chart) chart.destroy();
    };
  });
</script>

<canvas bind:this={canvas}></canvas>

This component creates a real-time temperature line chart using Chart.js. When mounted, it initializes an empty chart with the appropriate styling and scale settings. The reactive statement, ($:), watches for changes in the data array, automatically updating the chart with new temperature readings and converting timestamps to readable time formats.

Create a similar component for humidity in frontend/src/lib/components/HumidityGauge.svelte:

<script lang="ts">
  import { onMount } from 'svelte';
  import Chart from 'chart.js/auto';

  const { value } = $props<{ value: number }>();
  let canvas: HTMLCanvasElement;
  let chart = $state<Chart | undefined>(undefined);

  $effect(() => {
    if (chart && value !== undefined) {
      chart.data.datasets[0].data = [value];
      chart.update();
    }
  });

  onMount(() => {
    chart = new Chart(canvas, {
      type: 'doughnut',
      data: {
        datasets: [{
          data: [value],
          backgroundColor: ['#2ecc71'],
          circumference: 180,
          rotation: 270,
        }]
      },
      options: {
        responsive: true,
        maintainAspectRatio: false,
        plugins: {
          tooltip: {
            enabled: false
          }
        }
      }
    });

    return () => {
      if (chart) chart.destroy();
    };
  });
</script>

<div class="gauge-container">
  <canvas bind:this={canvas}></canvas>
  <div class="gauge-value">{value}%</div>
</div>

<style>
  .gauge-container {
    position: relative;
    height: 200px;
  }

  .gauge-value {
    position: absolute;
    bottom: 0;
    left: 50%;
    transform: translateX(-50%);
    font-size: 1.5rem;
    font-weight: bold;
  }
</style>

In this section, we created a gauge chart component using Svelte 5's runes. The component uses $props() to declare its properties and $state() for reactive state management. The $effect() rune replaces the traditional reactive statement to update the chart when the value changes. By using Chart.js' doughnut type with custom configuration (circumference: 180, rotation: 270), we've created a semi-circular gauge that displays the current humidity value.

Now, let's update our main page to include historical data and the new chart components. Update frontend/src/routes/+page.svelte:

<script lang="ts">
  import { onMount } from 'svelte';
  import TemperatureChart from '$lib/components/TemperatureChart.svelte';
  import HumidityGauge from '$lib/components/HumidityGauge.svelte';
  import type { SensorReading } from '$lib/types';

  let currentReading = $state<SensorReading | null>(null);
  let historicalData = $state<SensorReading[]>([]);
  let eventSource = $state<EventSource | undefined>(undefined);

  onMount(async () => {
    // Initial data fetch
    const response = await fetch('http://localhost:8000/current');
    currentReading = await response.json();
    historicalData = [currentReading];

    // Set up SSE connection
    eventSource = new EventSource('http://localhost:8000/stream');
    eventSource.addEventListener('sensor_update', (event) => {
      currentReading = JSON.parse(event.data);
      historicalData = [...historicalData, currentReading].slice(-30); // Keep last 30 readings
    });

    return () => {
      if (eventSource) eventSource.close();
    };
  });
</script>

<main class="container">
  <h1>Sensor Dashboard</h1>

  {#if currentReading}
    <div class="dashboard-grid">
      <div class="card span-2">
        <h2>Temperature History</h2>
        <TemperatureChart data={historicalData} />
      </div>

      <div class="card">
        <h2>Current Humidity</h2>
        <HumidityGauge value={currentReading.humidity} />
      </div>

      <div class="card">
        <h2>System Status</h2>
        <div class="status-container">
          <div class="status-indicator {currentReading.status}"></div>
          <p class="status-text">{currentReading.status}</p>
          <p class="timestamp">Last updated: {new Date(currentReading.timestamp).toLocaleTimeString()}</p>
        </div>
      </div>
    </div>
  {/if}
</main>

<style>
  .container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 2rem;
  }

  .dashboard-grid {
    display: grid;
    grid-template-columns: repeat(2, 1fr);
    gap: 1rem;
    margin-top: 2rem;
  }

  .card {
    background: #fff;
    padding: 1.5rem;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
  }

  .span-2 {
    grid-column: span 2;
  }

  .status-container {
    display: flex;
    flex-direction: column;
    align-items: center;
    gap: 1rem;
  }

  .status-indicator {
    width: 80px;
    height: 80px;
    border-radius: 50%;
    margin: 1rem 0;
  }

  .status-indicator.normal { background-color: #2ecc71; }
  .status-indicator.warning { background-color: #f1c40f; }
  .status-indicator.critical { background-color: #e74c3c; }

  .status-text {
    text-transform: uppercase;
    font-weight: bold;
  }

  .timestamp {
    color: #666;
    font-size: 0.9rem;
  }

  @media (max-width: 768px) {
    .dashboard-grid {
      grid-template-columns: 1fr;
    }

    .span-2 {
      grid-column: auto;
    }
  }
</style>

Now in the browser you should see the following:

Dashboard interactive

Settings and Alerts

Alert Notifications

Let's create a notification system for when sensor values exceed certain thresholds. Create a new component in frontend/src/lib/components/AlertBanner.svelte:

<script lang="ts">
  import { fade } from 'svelte/transition';

  const { message, type = 'warning' } = $props<{
    message: string;
    type?: 'warning' | 'critical'
  }>();
</script>

{#if message}
  <div class="alert {type}" transition:fade>
    <span class="alert-icon">⚠️</span>
    {message}
  </div>
{/if}

<style>
  .alert {
    position: fixed;
    top: 1rem;
    right: 1rem;
    padding: 1rem;
    border-radius: 4px;
    color: white;
    display: flex;
    align-items: center;
    gap: 0.5rem;
    z-index: 1000;
  }

  .warning {
    background-color: #f1c40f;
  }

  .critical {
    background-color: #e74c3c;
  }

  .alert-icon {
    font-size: 1.2rem;
  }
</style>

The AlertBanner component implements conditional UI rendering using Svelte's {#if} block pattern to toggle alert visibility. When there is an alert message, the component displays a banner with an icon and a message.

Settings Panel

Finally, let's add a settings panel to configure alert thresholds in frontend/src/lib/components/SettingsPanel.svelte:

<script lang="ts">
  import { fade } from 'svelte/transition';

  const props = $props<{
    tempThreshold?: number;
    humidityThreshold?: number;
    onTempChange?: (value: number) => void;
    onHumidityChange?: (value: number) => void;
  }>();

  let localTempThreshold = $state(props.tempThreshold ?? 25);
  let localHumidityThreshold = $state(props.humidityThreshold ?? 60);
  let isOpen = $state(false);

  function updateSettings() {
    // Send values back to parent
    props.onTempChange?.(localTempThreshold);
    props.onHumidityChange?.(localHumidityThreshold);
    isOpen = false;
  }
</script>

<div class="settings-container">
  <button class="settings-button" on:click={() => isOpen = !isOpen}>
    ⚙️ Settings
  </button>

  {#if isOpen}
    <div class="settings-panel" transition:fade>
      <h3>Alert Thresholds</h3>
      <div class="setting-group">
        <label>
          Temperature (°C)
          <input type="number" bind:value={localTempThreshold} min="0" max="40" step="0.5">
        </label>
      </div>
      <div class="setting-group">
        <label>
          Humidity (%)
          <input type="number" bind:value={localHumidityThreshold} min="0" max="100" step="5">
        </label>
      </div>
      <div class="button-group">
        <button class="cancel" on:click={() => isOpen = false}>Cancel</button>
        <button class="save" on:click={updateSettings}>Save</button>
      </div>
    </div>
  {/if}
</div>

<style>
  .settings-container {
    position: fixed;
    bottom: 1rem;
    right: 1rem;
    z-index: 1000;
  }

  .settings-button {
    background: #2c3e50;
    color: white;
    border: none;
    padding: 0.5rem 1rem;
    border-radius: 4px;
    cursor: pointer;
    transition: background-color 0.2s;
  }

  .settings-button:hover {
    background: #34495e;
  }

  .settings-panel {
    position: absolute;
    bottom: 100%;
    right: 0;
    background: white;
    padding: 1.5rem;
    border-radius: 8px;
    box-shadow: 0 2px 8px rgba(0,0,0,0.2);
    margin-bottom: 0.5rem;
    min-width: 280px;
    color: #2c3e50;
  }

  h3 {
    margin: 0 0 1rem 0;
    font-size: 1.2rem;
    color: #2c3e50;
  }

  .setting-group {
    margin: 1rem 0;
  }

  label {
    display: flex;
    flex-direction: column;
    gap: 0.5rem;
    font-size: 0.9rem;
    color: #34495e;
  }

  input {
    padding: 0.5rem;
    border: 1px solid #ddd;
    border-radius: 4px;
    font-size: 1rem;
    width: 100%;
  }

  input:focus {
    outline: none;
    border-color: #3498db;
    box-shadow: 0 0 0 2px rgba(52, 152, 219, 0.2);
  }

  .button-group {
    display: flex;
    justify-content: flex-end;
    gap: 0.5rem;
    margin-top: 1.5rem;
  }

  .button-group button {
    padding: 0.5rem 1rem;
    border: none;
    border-radius: 4px;
    cursor: pointer;
    font-size: 0.9rem;
    transition: opacity 0.2s;
  }

  .button-group button:hover {
    opacity: 0.9;
  }

  .save {
    background: #2ecc71;
    color: white;
  }

  .cancel {
    background: #95a5a6;
    color: white;
  }
</style>

In the SettingsPanel component, we've implemented a configurable interface for alert threshold management. We're using a callback pattern with the following steps:

  1. The component receives the current values as props (tempThreshold, humidityThreshold)
  2. It also receives callback functions (onTempChange, onHumidityChange) to notify the parent of changes
  3. It maintains its own local state with $state for the form inputs
  4. When the user clicks "Save", it calls the callbacks with the updated values

Update the main page, frontend/src/routes/+page.svelte, to include alert handling and the settings panel:

<script lang="ts">
  import { onMount } from 'svelte';
  import TemperatureChart from '$lib/components/TemperatureChart.svelte';
  import HumidityGauge from '$lib/components/HumidityGauge.svelte';
  import SettingsPanel from '$lib/components/SettingsPanel.svelte';
  import AlertBanner from '$lib/components/AlertBanner.svelte';
  import type { SensorReading } from '$lib/types';

  let currentReading = $state<SensorReading | null>(null);
  let historicalData = $state<SensorReading[]>([]);
  let eventSource = $state<EventSource | undefined>(undefined);
  let tempThreshold = $state(25);
  let humidityThreshold = $state(60);
  let alertMessage = $state('');
  let alertType = $state<'warning' | 'critical'>('warning');

  function checkAlertConditions(reading: SensorReading) {
    if (reading.temperature > tempThreshold) {
      alertMessage = `High temperature detected: ${reading.temperature}°C`;
      alertType = 'critical';
    } else if (reading.humidity > humidityThreshold) {
      alertMessage = `High humidity detected: ${reading.humidity}%`;
      alertType = 'warning';
    } else {
      alertMessage = '';
    }
  }

  // Reactive effect to check alerts when thresholds or readings change
  $effect(() => {
    if (currentReading) {
      checkAlertConditions(currentReading);
    }
  });

  onMount(async () => {
    // Initial data fetch
    const response = await fetch('http://localhost:8000/current');
    currentReading = await response.json();
    historicalData = [currentReading];

    // Set up SSE connection
    eventSource = new EventSource('http://localhost:8000/stream');
    eventSource.addEventListener('sensor_update', (event) => {
      currentReading = JSON.parse(event.data);
      historicalData = [...historicalData, currentReading].slice(-30); // Keep last 30 readings
      if (currentReading) {
        checkAlertConditions(currentReading);
      }
    });

    return () => {
      if (eventSource) eventSource.close();
    };
  });
</script>

<AlertBanner message={alertMessage} type={alertType} />

<main class="container">
  <h1>Sensor Dashboard</h1>

  {#if currentReading}
    <div class="dashboard-grid">
      <div class="card span-2">
        <h2>Temperature History</h2>
        <TemperatureChart data={historicalData} />
      </div>

      <div class="card">
        <h2>Current Humidity</h2>
        <HumidityGauge value={currentReading.humidity} />
      </div>

      <div class="card">
        <h2>System Status</h2>
        <div class="status-container">
          <div class="status-indicator {currentReading.status}"></div>
          <p class="status-text">{currentReading.status}</p>
          <p class="timestamp">Last updated: {new Date(currentReading.timestamp).toLocaleTimeString()}</p>
        </div>
      </div>
    </div>
  {/if}
</main>

<style>
  .container {
    max-width: 1200px;
    margin: 0 auto;
    padding: 2rem;
  }

  .dashboard-grid {
    display: grid;
    grid-template-columns: repeat(2, 1fr);
    gap: 1rem;
    margin-top: 2rem;
  }

  .card {
    background: #fff;
    padding: 1.5rem;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
  }

  .span-2 {
    grid-column: span 2;
  }

  .status-container {
    display: flex;
    flex-direction: column;
    align-items: center;
    gap: 1rem;
  }

  .status-indicator {
    width: 80px;
    height: 80px;
    border-radius: 50%;
    margin: 1rem 0;
  }

  .status-indicator.normal { background-color: #2ecc71; }
  .status-indicator.warning { background-color: #f1c40f; }
  .status-indicator.critical { background-color: #e74c3c; }

  .status-text {
    text-transform: uppercase;
    font-weight: bold;
  }

  .timestamp {
    color: #666;
    font-size: 0.9rem;
  }

  @media (max-width: 768px) {
    .dashboard-grid {
      grid-template-columns: 1fr;
    }

    .span-2 {
      grid-column: auto;
    }
  }
</style>

<SettingsPanel
  tempThreshold={tempThreshold}
  humidityThreshold={humidityThreshold}
  onTempChange={(value) => tempThreshold = value}
  onHumidityChange={(value) => humidityThreshold = value}
/>

The final dashboard combines all components: temperature history chart, humidity gauge, system status indicator, alert banner, and settings panel.

Your real-time dashboard is now complete with charts, alerts, and configurable settings! The final result should look something like this:

Dashboard final

Conclusion

In this tutorial, we've built a real-time dashboard using Flask and Svelte. We've covered:

  • Setting up a Flask backend with SSE for real-time data streaming
  • Creating a responsive Svelte frontend with interactive charts
  • Implementing real-time data updates and historical data tracking
  • Adding an alert system for monitoring threshold violations
  • Creating a configurable settings panel

This dashboard can serve as a foundation for more complex monitoring applications. Some potential enhancements could include:

  • Adding authentication
  • Persisting historical data in a database
  • Adding more visualization types
  • Implementing websocket communication for bi-directional real-time updates
  • Adding export functionality for historical data

The complete source code for this project is available on GitHub.

Amir Tadrisi

Amir Tadrisi

Amir loves building educational applications and has been doing so since 2013. He's a full-stack developer who loves the challenges of working with cutting-edge technologies like Python, Django, React, and Next.js to create modern, scalable learning management systems.

Share this tutorial

Featured Course

Test-Driven Development with Python, Flask, and Docker

In this course, you'll learn how to set up a development environment with Docker in order to build and deploy a microservice powered by Python and Flask. You'll also apply the practices of Test-Driven Development with pytest as you develop a RESTful API.

Featured Course

Test-Driven Development with Python, Flask, and Docker

In this course, you'll learn how to set up a development environment with Docker in order to build and deploy a microservice powered by Python and Flask. You'll also apply the practices of Test-Driven Development with pytest as you develop a RESTful API.