Deploying Spark on Kubernetes

Last updated November 27th, 2021

This post details how to deploy Spark on a Kubernetes cluster.

Dependencies:

  • Docker v20.10.10
  • Minikube v1.24.0
  • Spark v3.2.0
  • Hadoop v3.3.1

Contents

Minikube

Minikube is a tool used to run a single-node Kubernetes cluster locally.

Follow the official Install Minikube guide to install it along with a Hypervisor (like VirtualBox or HyperKit), to manage virtual machines, and Kubectl, to deploy and manage apps on Kubernetes.

By default, the Minikube VM is configured to use 1GB of memory and 2 CPU cores. This is not sufficient for Spark jobs, so be sure to increase the memory in your Docker client (for HyperKit) or directly in VirtualBox. Then, when you start Minikube, pass the memory and CPU options to it:

$ minikube start --vm-driver=hyperkit --memory 8192 --cpus 4

or

$ minikube start --memory 8192 --cpus 4

Docker

Next, let's build a custom Docker image for Spark 3.2.0, designed for Spark Standalone mode.

Dockerfile:

# base image
FROM openjdk:11

# define spark and hadoop versions
ENV SPARK_VERSION=3.2.0
ENV HADOOP_VERSION=3.3.1

# download and install hadoop
RUN mkdir -p /opt && \
    cd /opt && \
    curl http://archive.apache.org/dist/hadoop/common/hadoop-${HADOOP_VERSION}/hadoop-${HADOOP_VERSION}.tar.gz | \
        tar -zx hadoop-${HADOOP_VERSION}/lib/native && \
    ln -s hadoop-${HADOOP_VERSION} hadoop && \
    echo Hadoop ${HADOOP_VERSION} native libraries installed in /opt/hadoop/lib/native

# download and install spark
RUN mkdir -p /opt && \
    cd /opt && \
    curl http://archive.apache.org/dist/spark/spark-${SPARK_VERSION}/spark-${SPARK_VERSION}-bin-hadoop2.7.tgz | \
        tar -zx && \
    ln -s spark-${SPARK_VERSION}-bin-hadoop2.7 spark && \
    echo Spark ${SPARK_VERSION} installed in /opt

# add scripts and update spark default config
ADD common.sh spark-master spark-worker /
ADD spark-defaults.conf /opt/spark/conf/spark-defaults.conf
ENV PATH $PATH:/opt/spark/bin

You can find the above Dockerfile along with the Spark config file and scripts in the spark-kubernetes repo on GitHub.

Build the image:

$ eval $(minikube docker-env)
$ docker build -f docker/Dockerfile -t spark-hadoop:3.2.0 ./docker

If you don't want to spend the time building the image locally, feel free to use my pre-built Spark image from Docker Hub: mjhea0/spark-hadoop:3.2.0.

View:

$ docker image ls spark-hadoop

REPOSITORY          TAG                 IMAGE ID            CREATED             SIZE
spark-hadoop        3.2.0               8f3ccdadd795        11 minutes ago      1.12GB

Spark Master

spark-master-deployment.yaml:

kind: Deployment
apiVersion: apps/v1
metadata:
  name: spark-master
spec:
  replicas: 1
  selector:
    matchLabels:
      component: spark-master
  template:
    metadata:
      labels:
        component: spark-master
    spec:
      containers:
        - name: spark-master
          image: spark-hadoop:3.2.0
          command: ["/spark-master"]
          ports:
            - containerPort: 7077
            - containerPort: 8080
          resources:
            requests:
              cpu: 100m

spark-master-service.yaml:

kind: Service
apiVersion: v1
metadata:
  name: spark-master
spec:
  ports:
    - name: webui
      port: 8080
      targetPort: 8080
    - name: spark
      port: 7077
      targetPort: 7077
  selector:
    component: spark-master

Create the Spark master Deployment and start the Services:

$ kubectl create -f ./kubernetes/spark-master-deployment.yaml
$ kubectl create -f ./kubernetes/spark-master-service.yaml

Verify:

$ kubectl get deployments

NAME           READY   UP-TO-DATE   AVAILABLE   AGE
spark-master   1/1     1            1           2m55s


$ kubectl get pods

NAME                          READY   STATUS    RESTARTS   AGE
spark-master-dbc47bc9-tlgfs   1/1     Running   0          3m8s

Spark Workers

spark-worker-deployment.yaml:

kind: Deployment
apiVersion: apps/v1
metadata:
  name: spark-worker
spec:
  replicas: 2
  selector:
    matchLabels:
      component: spark-worker
  template:
    metadata:
      labels:
        component: spark-worker
    spec:
      containers:
        - name: spark-worker
          image: spark-hadoop:3.2.0
          command: ["/spark-worker"]
          ports:
            - containerPort: 8081
          resources:
            requests:
              cpu: 100m

Create the Spark worker Deployment:

$ kubectl create -f ./kubernetes/spark-worker-deployment.yaml

Verify:

$ kubectl get deployments

NAME           READY   UP-TO-DATE   AVAILABLE   AGE
spark-master   1/1     1            1           6m35s
spark-worker   2/2     2            2           7s


$ kubectl get pods

NAME                            READY   STATUS    RESTARTS   AGE
spark-master-dbc47bc9-tlgfs     1/1     Running   0          6m53s
spark-worker-795dc47587-fjkjt   1/1     Running   0          25s
spark-worker-795dc47587-g9n64   1/1     Running   0          25s

Ingress

Did you notice that we exposed the Spark web UI on port 8080? In order to access it outside the cluster, let's configure an Ingress object.

minikube-ingress.yaml:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: minikube-ingress
  annotations:
spec:
  rules:
  - host: spark-kubernetes
    http:
      paths:
        - pathType: Prefix
          path: /
          backend:
            service:
              name: spark-master
              port:
                number: 8080

Enable the Ingress addon:

$ minikube addons enable ingress

Create the Ingress object:

$ kubectl apply -f ./kubernetes/minikube-ingress.yaml

Next, you need to update your /etc/hosts file to route requests from the host we defined, spark-kubernetes, to the Minikube instance.

Add an entry to /etc/hosts:

$ echo "$(minikube ip) spark-kubernetes" | sudo tee -a /etc/hosts

Test it out in the browser at http://spark-kubernetes/:

spark web ui

Test

To test, run the PySpark shell from the the master container:

$ kubectl get pods -o wide

NAME                            READY   STATUS    RESTARTS   AGE     IP           NODE       NOMINATED NODE   READINESS GATES
spark-master-dbc47bc9-t6v84     1/1     Running   0          7m35s   172.17.0.6   minikube   <none>           <none>
spark-worker-795dc47587-5ch8f   1/1     Running   0          7m24s   172.17.0.9   minikube   <none>           <none>
spark-worker-795dc47587-fvcf6   1/1     Running   0          7m24s   172.17.0.7   minikube   <none>           <none>

$ kubectl exec spark-master-dbc47bc9-t6v84 -it -- \
    pyspark --conf spark.driver.bindAddress=172.17.0.6 --conf spark.driver.host=172.17.0.6

Then run the following code after the PySpark prompt appears:

words = 'the quick brown fox jumps over the\
        lazy dog the quick brown fox jumps over the lazy dog'
sc = SparkContext.getOrCreate()
seq = words.split()
data = sc.parallelize(seq)
counts = data.map(lambda word: (word, 1)).reduceByKey(lambda a, b: a + b).collect()
dict(counts)
sc.stop()

You should see:

{'brown': 2, 'lazy': 2, 'over': 2, 'fox': 2, 'dog': 2, 'quick': 2, 'the': 4, 'jumps': 2}

That's it!


You can find the scripts in the spark-kubernetes repo on GitHub. Cheers!

Featured Course

Test-Driven Development with Django, Django REST Framework, and Docker

In this course, you'll learn how to set up a development environment with Docker in order to build and deploy a RESTful API powered by Python, Django, and Django REST Framework.

Featured Course

Test-Driven Development with Django, Django REST Framework, and Docker

In this course, you'll learn how to set up a development environment with Docker in order to build and deploy a RESTful API powered by Python, Django, and Django REST Framework.